
LA-UR- 03-IC33I
Approved for public release;
distribution is unlimited.

Title

Author(s)

Submitted to.

An Electronic Notebook for Physical System Simulation

Robert L. Kelsey

SPIE AeroSense
April 21-25, 2003
Orlando, FL

Alamos
N A T I O N A L L A B O R A T O R Y

Los Alamos National Laboratory, an affirmative actiodequal opportunity employer, is operated by the University of California for the US.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US.
Government purposes. Los Alamos Nalional Laboratory requests that the publisher identify this article as work performed under lhe
auspices of the US. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

An electronic notebook for physical system simulation

Robert L. Kelsey
Los AIamos National Laboratory

X-8 MS-F645, Los Alamos, NM 87545

ABSTRACT

A scientist who sets up and runs experiments typically keeps notes of this process in a lab notebook. A scientist
who runs computer simulations should be no different. Experiments and simulations both require a set-up
process which should be documented along with the results of the experiment or simulation. The documentation
is important for knowing and understanding what was attempted, what took place, and how to reproduce it in
the future.

Modern simulations of physical systems have become more complex due in part to larger computational
resources and increased understanding of physical systems. These simulations may be performed by combining
the results from multiple computer codes. The machines that these simulations are executed on are often
massively parallelldistributed systems. The output result of one of these simulations can be a terabyte of data
and can require months of computing. All of these things contribute to the difficulty of keeping a useful record
of the process of setting up and executing a simulation for a physical system.

An electronic notebook for physical system simulations has been designed to help document the set up and
execution process. Much of the documenting is done automatically by the simulation rather than the scientist
running the simulation. Tho simulation knows what codes, data, software libraries, and versions thereof it
is drawing together. All of these pieces of information become documented in the electronic notebook. The
electronic notebook is designed with and uses the extensible Markup Language (XML). XML facilitates the
representation, storage, interchange, and further use of the documented information.

Keywords: physical system simulation, electronic notebook, XML-based representation

1. BACKGROUND

1.1. Simulations

The size and complexity of simulations has grown with the size and complexity of computing machines. It is
no longer enough for physical systems to be simulated in two dimensions at coarse resolution. Now, physical
systems must be simulated in three dimensions with increasingly finer resolution to gain insight into more and
smaller details. A greater amount of input information is used to initialize these simulations and a higher fidelity
result is expected. All of this has contributed to the increasing complexity of simulations.

The increase in size and complexjty of simulations has in turn led to an increase in size and complexity of the
machines executing the simulations. “The larger the computer, the greater the complexity that could be simulated
accurately.” There has been an evolution of larger machines, faster processors, increased number of processors,
increasingly complex interconnection networks, and more sophisticated parallel programming strategies to reap
answers from simulation’ problems.

Typical physical system simulations of yesterday at Los Alamos consisted of approximately two input files.
Execution of the simulation resulted in aiproximately 50 output files. The run time was a matter of hours with
overnight turnaround. The physical systcm simulations of today consist of one or more input files often larger
in size than yesterday’s input file. It can i,ake weeks to months of run time for a single simulation to complete
execution. The result can be thousands of output files.

Further author information: E-mail: robQlanl.gov
- ~ . - ~

In this application there are a number of separate XML-based representations being used. However, the
main representation is the representation of a notebook. In the representation the root element is the enotebook
element. The enotebook element has a date attribute which identifies the creation date of the notebook and a
name attribute which is a unique identifier of the notebook. An enotebook element can contain any number of
entry elements. An entry element represents an entry in the notebook. Figure 1 shows an abstract view of the
representation of a notebook, Elements are shown in a slightly larger type face and are connected by arrows.
The attributes of an element are shown to the right of each element. The arrows show what child elements are
contained in a parent element.

name enotebook date
I

id
date
author

entry subject / \ s-reference

content attachment
uri
tY Pe
handler

Figure 1. An abstract view of the representation of a notebook.

The entry element has six attributes: id, date, author, subject, type, and cross reference. The id is a unique
identification of an entry. The date is the creation date of the entry. The author is who or what created the
entry. The author could be a use or a computer program. The subject is a brief message about the topic of the
entry. The type describes the category of the entry, such as a set up or execution entry. The cross reference
is available to reference between entries. The entry element contains a content element and any number of
attachment elements.

The content element has no attributes. The content element contains the message or note about the entry.
The attachment element represents files or information to be attached to an entry. It can either contain or point
to the file or information. The attachment. element has three attributes: uri, type, and handler. The uri is a
uniform resource identifier and serves as a pointer to an external file or resource. The type identifies what type
or format the attachment is, for example, XML or text format. The handler identifies a program to read or view
the attachment.

Another important XML,-based representation is the representation for physical systems for simulation. This
representation includes all the objccts necessary to create a description of a physical system such as a shock
wave physics problem or the motion of a projectile. At the highest level the representation includes objects
for a computational mesh, :simulation start up information, a set of materials, a set of geometric bodies, and
simulation output information.5> The representation also serves as a data-interchange format. This means that
a single physical system description can be converted to several different native formats and simulated on several
different application codes.

Electronic Notebook

' Browser a Apache
Xindice

m*" Browser

Figure 3. User interaction with the electronic notebook.

2.2.4. Program requests
Programs executing within simulations can make both read and write requests but as opposed to users, programs
typically make mostly write requests to the notebook. Since there is no user involved (other than starting the
simulation) the requests are not interactive. Thus, the path to the notebook is different and uses different
technology. Like the user requests, program requests still go through the access control system.

Simulation programs use a notebook application programming interface (API) to send requests through the
access control system (after authentication) to an XML Remote Procedure Call (XMLRPC) server. XMLRPC
is a specifi~ation'~ for transporting XML encoded data via hypertext transfer protocol (HTTP). XMLRPC is
particularly useful for tying together disparate systems and environments. Figure 4 diagrams how program
requests are made to the electronic notebook. Multiple simulations are shown making requests. Each individual
simulation uses the notebook API to connect to the notebook.

Electronic Nofebook

Xindice

Clients

Figure 4. Simulation requests with the electronic notebook.

The notebook API actually consists of different forms of XMLRPC clients. The client makes a request

7. R. L. Kelsey, K. R. Risset, and R. B. Webster, “Automated parametric execution and documentation €or
large-scale simulations,” in Enabling Technology for Simulation Science V, 4367, pp. 202-208, Society of
Photo-Optical Instrumentation Engineers, Society of Photo-Optical Instrumentation Engineers, (Belling-
ham, WA), 2001.

8. R. L. Kelsey, J. M. Riese, and G. A. Young, “XML-based knowledge management for software develop-
ment,” in Proceedings of the International Conference on Knowledge Engineering 2002, 2002 International
MultiConference, June 2002.

9. The Apache XML Project, Apache Xindice, 2002. http: //xrnl.apache.org/xindice.
10. The Apache Jakarta Project, Apache Tomcat, 2002. http://jakarta.apache.org/tomcat.
11. Sun Microsystems, Inc., Sun Java Technology, 2003. http://java.sun.com.
12. Sun Microsystems, Inc., Javn Servlet Technology, 2003. http://java.sun.com/servlet.
13. Sun Microsystems, Inc., Java Server Pages Technology, 2003. http://java.sun.com/jsp.
14. Userland Software, Inc., X M L R P C Specification, 2002. http://www.xmlrpc.com/spec.

